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Abstract 

In order to answer this question, we analyse different phenomena occurring in general 
experimental set-ups arranged to analyse the properties of some unknown beams of 
particles. We arrive at the conclusion that sometimes the Hilbert space language appears 
to be too rich and also that there axe some phenomena where the notion of transition 
probability disappears and any attempt to introduce it leads to the possibility of infinitely 
many inequivalent descriptions. Our analysis encouraged us to ask the question whether 
the Hitbert space language is not too rich in the more realistic situations, for example to 
deal with high-energy elementary particle scattering phenomena. A programme of investi- 
gations in that direction is formulated. 

In the polemic with axiomatic quantum mechanics it is shown that the pure state con- 
cept can be formulated independently of the existence of any maximal filter. 

1. Introduction 

Axiomatic quantum mechanics aimed to prove the uniqueness of the quan- 
tum mechanical Hilbert space description for all future phenomena. The 
efforts were concentrated on a search for such a set of axioms, concerning the 
general structure of the propositions which can be said about the physical 
systems, which would imply the usual Hllbert space or algebraic representation. 

The investigations started by Birkhoff & yon Neumann (1936), and con- 
tinued in many other papers (Dghn, 1968, Finkelstein, 1963; Finkelstein, 
Jauch, Schimonovich & Speiser, 1962, 1963; Gunson, 1967; Jauch, 1964, 
1968; Jauch & Piron, 1963; Ludwig, 1967; Mackey, t963; Mielnik, 1968, 
1969; Piton, 1964; Pool, 1968a, b) led to different axiomatisation schemes 
with the required properties. Though some of the accepted axioms did not 
seem to be natural, the general belief is that the problem is solved and that we 
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can freely use the usual Hilbert space language in future. One can claim that it 
is not true, because we have to deal with the rigged Hilbert spaces and because 
for the continuous spectrum the eigenvectors are only the distributions acting 
on some nuclear space q~, but in all practical cases we can use wave packets and 
regularised fields to obtain measurable results in the framework of some 
Hilbert space. 

Axiomatic quantum mechanics was vigorously attacked by Mielnik (1968, 
1969), who claimed to prove that the Hilbert space description is only one 
degenerate case of the infinitely many non-Hilbertian quantum worlds to be 
observed in the future. In this paper we show that such conclusions are not 
well. Mielnik's analysis is based on the quite unrealistic assumption that the 
physical transition probabilities between some pure states are equal to the 
static transmission probabilities between two maximal filters used for the 
preparation of these states. 

In our opinion, the approach of axiomatic quantum mechanics is too 
general to give insight into some specific physical phenomena which can appear 
in different experimental set-ups. For this reason, we analyse the general experi- 
mental set-up E which can be used to investigate the phenomena characterising 
the ensembles of particle-beams. We assume that our experimental set-up E can 
consist of the following devices: 

(i) the sources S which produce beams B; 
(ii) the filters F which allow the division of beams into sub-beams having 

some common properties; 
(iii) the transmitters T which change a beam b into a beam bT; 
(iv) the detectors Dp which register the intensity of the beams having a 

property p; 
(v) the instruments L A beam b enters into an instrument, the instrument 

measures some property, and a beam bz goes out. 

However, two observers investigating the same beam, but equipped with a 
different set of devices, can observe different phenomena and discover different 
mathematical schemes to describe them. Keeping this possibility in mind, we 
have been trying to analyse the different cases of the experimental set-up E, 
differing by the richness of the beams and the devices. 

A careful analysis leads us to new definitions of filters, pure ensembles and 
to the important conclusion that in any considered case the Hilbert space 
description turns out to be possible. However, sometimes the data does not 
allow the extraction of the transition probabilities in a unique way, so it is 
more reasonable to abandon the Hilbert space description and to try to explain 
a causal evolution of the whole ensembles. Another feature which appears in 
our analysis is the fact that only some vectors and some scalar products in the 
Hitbert space description of the phenomena have a physical meaning; so, in 
some way, the Hilbert space language is too rich. 

The ' too rich' language makes possible that using more or less phenomeno- 
logical models we can always (in no unique way) explain the data without 
really broadening the understanding of them. The above-mentioned successes 
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in the explanation of the data deepen the belief in the basic and unchangeable 
character of the language used and build a psychological barrier, making the 
discovery of a new, more economic and less ambiguous, language much more 
difficult. 

All these considerations encouraged us to raise the important question 
whether the Hilbert space language is not too rich to explain the observed 
physical phenomena, for example in high-energy elementary-particle physics. 
A natural question arises: how could we find out whether this is the case? 
Although it is evident now that we cannot assign to all vectors in the Hilbert 
Fock space the physically realised states of the elementary particles system 
and that not all scalar products can be practically measured, yet it does not 
mean that the Hilbert space language is too rich. Similarly, in classical mech- 
anics not every solution of an arbitrary Newton equation has a practical 
meaning and this does not mean that the language of classical physics is 
inappropriate. 

To show that the Hilbert space language is too rich to deal with the scatter- 
ing phenomena of elementary particles, we would have to show that, for 
example, the assumption of the unitary S matrix (which is derived using the 
assumption that any vector in the Hilbert state can be taken as an initial state) 
is violated. For example, we would have to find two such initial realisable states 
I il) and I i2), which in our formalism must be represented by the orthogonal 
vectors, and show that the states l Sil) and I Si2) cannot be represented by the 
ort_hogonal vectors in the Hilbert space. 

A careful analysis of these problems will be continued in the subsequent 
paper. 

2. General ExperimentaI Set-ups 

At first we shall try to be as general as possible, so we shall consider two 
sets of objects: a set of sources and a set of  devices. The interactions between 
beams, produced by the sources, and the devices give us the information about 
them which can enable us to make physics. In general, the information 
obtained is not unambiguous, so one has to accept some additional inter- 
pretational assumptions. 

Usually one acts in a different way. Wanting to investigate beams, one con- 
structs some devices based on the knowledge of classical and quantum physics. 
Such devices make possible the description of the unknown beams in terms of 
the quantities known before (like mass, momentum, energy, charge, spin, etc.). 
Such an approach is very reasonable, since it assumes the continuity of the 
science which worked so well before. However, let us cite Bohr (1961): 'The 
main point to realise is that a knowledge presents itself within a conceptual 
framework adapted to account for previous experience and that any such 
frame may prove too narrow to comprehend new experiences. . ."  and ' . . .  
when speaking of a conceptual framework we refer merely to the unambiguous 
logical representation of relations between experiences. . . ' .  

Keeping this in mind, we now forget about our science and we assume that 
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we know nearly nothing about the sources and the devices. We want to investi- 
gate the problem of how we should deal with that case and what kind of 
language could be used to describe the observed phenomena. Let us start with 
some statements: 

Statement  1. The sources S and all the devices used in the experimental 
set-up are given a priori. They should have the very important feature of 
reconstructabili W, by which we understand that identical set-ups can be con- 
structed in any other laboratory at any time. 

Statement  2. Among all the devices, we must have a counter g of quanta 
which must be used to find the intensity of the beams. This counter is at least 
one 'classical' device which is necessary to make quantitative 'quantum" 
physics. The problem is to construct such a counter for unknown beams; but 
let us assume that we have it. It need not be an absolute counter, like in Piron 
(1964), but it should be the most sensitive one available. 

Statement  3. Using the counter g, we can observe the changes of  the beam 
intensities after their interactions with the devices. Those interactions give us 
the information about the beams and the devices we have. This information 
allows us to classify the beams and to find among the devices such objects as 
filters, transmitters, etc. Of course, the information about the beams depends 
essentially on the devices used, and vice versa the information about the 
devices depends essentially on the beams which we have at our disposal. So 
everything we know is to a large extent relative, and we can never be sure that 
in the future we shall not discover other beams and devices which will change 
the interpretation of some old phenomena or which will force us to find a new 
theoretical language to describe the new ones. Similar views are contained in 
Mielnik (1968). In many cases it seems to be improbable, but it cannot be 
excluded. 

Statement  4. Having some knowledge of the beams and devices, we have to 
choose some of them for further analysis. The chosen devices can be divided 
into two groups: 

(a) preparatory and analysing devices, 
(b) transmitters. 

Such a division corresponds to three stages of the experiment in which they 
~11 be used: 

(i) preparation, 
(ii) transmission, 

(iii) detection. 

Statement  5. In the preparation stage we classify and prepare the beams. 
We introduce the concept of pure and mixed beams. Knowing the properties 
of the pure beams, we can ascribe states to them. Thus the preparatory stage 
enables us to find a set of initial states whose change in the transmission stage 
we should try to explain. 

Statement  6. In the transmission stage we let our beams go through some 
chosen devices called transmitters. By transmitters we can understand also the 
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action of the external fields. If the beam was under the influence of the exter- 
nal field for the time At before detection, we can say that it went through the 
transmitter T(At). Thus we can have the approximately instantaneous change 
of the beam or we can observe its more or less continuous evolution. 

Statement 7. After the transmission stage we classify obtained beams and 
we try to find some mathematical language and a model allowing the inter- 
pretation of the observed regularities. 

Now we have to find out the meaning of some terms which appeared in 
these statements. It turns out that the definition of filters and pure states is 
not obvious. We cannot see the details of the transmission process as it looks 
inside a device. Therefore what we know is the change of intensity of the 
incoming beam. 

Before starting a more detailed discussion, we must add some assumptions in 
the spirit of Statement 1. We have to work with an approximately stable source, 
since in order to make predictions we have to know the intensities of the beams 
relying on previous measurements. We must also assume that our devices have 
no memory and act in the 'same' way on the 'same' beams. So in fact we are 
always dealing with ensembles/~ of the identically prepared beams b. Perform- 
ing many experiments we find the properties of the ensembles/7 and often we 
can ascribe them to every beam of the ensembles b. If it is possible, we shall 
talk about the beams and their properties instead of talking about the 
ensembles. In our case we cannot always prepare arbitrary mixtures of the 
produced beams. First we have to check whether the beams behave in a 
'classical' or in a 'quantum' way. We now make a short digression about such 
behaviour, which will be a short repetition of well-known things. 

If the beams and devices behave classically, then each quantum of the beam 
can be characterised by some properties, possessed in an attributive way, 
which can be found with the help of measurements. These measurements can 
by no means change the properties of the quanta. A device d which is trans- 
parent only to the quanta having a property 'd '  is called a classical filter. Such 
a device is of course idempotent, which means that it is neutral to all quanta 
to which it is transparent. If the quanta also have some other properties, we 
can construct, in principle, maximal filters-transparent only to the quanta 
having all properties the same. Pure beams are those which go through the 
maximal Filters without change. 

In quantum physics, a quantum can have a property with certainty, but 
only up to the moment of the measurement of another property which is 
incompatible with the first one. To discover the quantum behaviour one must 
show the incompatibility of some properties. For this purpose we must find 
at least two idempotent and incompatible devices d and I to perform the fol- 
lowing experiment with a beam b. We transmit the beam b through the device 
d and obtain a beam bd, for which a device d is transparent. Now we transmit 
the beam ba through the device l and we obtain a beam baz of smaller intensity. 
Now the device l is transparent to the beam bal. Finally, we transmit the beam 
ball through the device d, obtaining a beam bald. If the beam bal d g= ball, then 
we can say that the beams and devices do not behave in a classical way. 
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If, on the other hand, bala = bal = bla = balal and other devices incom- 
patible with d and I cannot be found in our experimental set-up, then we can 
say that the beam hal is pure, the devices/, d and l- d are classical filters and 
the device l- dis a maximal filter in our set (for simplicity we exclude the 
existence of other compatible more restrictive filters). Each quantum of  the 
beam bat has two properties "d' and ' / ' - t he  filters d and l are transparent to it. 

In the quantum case our classical picture of  a filter has to be completely 
changed. We cannot say, as in Piton (1964), ' . . .  quantum mechanical filter 
selects single particle properties'. All the quanta of  a beam b a have the same 
property 'd '  (the device d is to them transparent), but after going through the 
device l not all of  them can still have a property 'd'. So the idempotent device l 
does not select the quanta having a property 'l ' but it only transforms with a 
probability p(d, l) some quanta having a property 'd'  into a quanta having a 
property ' l '  and absorbs ones which are not transformed. 

We cannot explain this probabilistic approach assuming that the beam ba is 
a mixture of  the quanta labeUed by hidden parameters ~ constant in time and 
that the device l is a classical transmitter which can change the property 'd '  and 
the parameters ~ in a well.defined causal way depending on their initial values. 
The non-existence of hidden parameters of  this kind was shown in a different 
formalised language by Jauch & Piron (1963). So we have to assume that the 
devices l and d act in an intrinsically probabilistic way, but now we can ask 
whether it is possible to check that the beam b a is a pure beam. 

Let us, for example, assume that the beam bet of average intensity I is a 
mixture of two beams of intensities 11 and 12 consisting of quanta A and B, 
respectively. Let the device l act in the following way: 

it transmits each quantum A with a probability a and changes it into a 
quantum C; 
it transmits each quantum B with a probability b and changes it into a 
quantum D; 
it transmits all the quanta D and C without change. 

Let the device d act in a similar way: 

it transmits each quantum C with a probability c and changes it into a 
quantum A; 
it transmits each quantum D with a probability k and changes it into a 
quantum B; 
it transmits without change all quanta A and B. 

The transmission probabilities p (d, l) are strictly defined in the following way 

p(d, l) = Ss(r)r(d, 0 dr (2.1) 

where S denotes a sum or an integral over all values of r(d, l); s(r) is normalised 
to the unity probability distribution of the ratios r(d, l); the ratios r(d, l) = 
1ilia where la and It are the intensities of the beams ba and baz for all beams 
b E b. All other probabilities met later are defined in a similar way. The prob- 
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abilities p (d, l) and p (l, d) must be the same for all pairs of d-I and l-d, respect- 
i vely, occurring in the chain d-l-d-l-d-I of the experiments with the ensemble 
b. It  gives us the constraints on the possible values of a, b, c, k. Other con- 
straints are obvious: 0 < I1,12 < L 11 + 12 = I, 0 < a, b, e, k < 1. If  we analyse 
these constraints we come to the following corollary: 

Corollary. The probabilities a, b, c, k must satisfy the following condition 
a.  e = b.  K = w; then px(d, l) = (a + b.  k)/(1 + X) and px(l, d) = w/px(d, l) 
where X = I2/11. So for every two experimental numbers px(d, l) and 
pT,(l, d) we can adjust two parameters to make the above interpretation 
possible. 

However, as we see px(d, l) depends On the relative intensity X of the two 
hypothetical sub-beams; so we can verify our hypothesis by trying to change X 
in the beam b d. We do not have any other way than to cause the decrease of  
the intensity of the beams bd E b~a by different methods. If we do not obtain 
different values for px(d, l) and px(l, d), then we must reject our hypothesis 
and state that it is not legitimate to assume that the beams b a consist of sub- 
beams, so they can be called pure. But by the expression 'a pure beam' we 
should not understand a beam consisting of identical quanta, since the term 
'identical' is classical and means 'behaving in the same manner in all situations'. 
The devices l and d do not treat all the quanta from the beams be and b in the 
same way. We cannot understand the mechanism of this differentiation and also 
usually we do not observe separate stages of the transition. We just observe the 
behaviour of the beam b a as a whole and find the statistical regularities. There- 
fore, in the theoretical analysis of the process we should not represent the 
transmission of the beam bd by a set of yes-no experiments with each quan- 
tum, but more properly we should talk about the properties of the beams as a 
whole and about states of the beam instead of talking about the states of the 
single quanta. In some situations it can happen that only the states of ensembles 
b have a precise meaning. We shall discuss such situations later. This wholeness 
of the physical phenomenon in the microworld was wisely pointed out by 
Bohr (1961) many times. 

We have spent so much time discussing the devices I and d because they 
behave in a way analogous to the behaviour of the tourmaline plates which are 
usually called filters. We wanted to show to what extent they are not classical, 
if discussed in terms of corpuscular language. Their fffltering properties can be 
understood in the language associating a wave to each beam. We also wanted 
to get an intuition enabling us to define filters and pure beams in our poor 
information system. 

Definition 1. Filters are devices which: 

(i) are idempotent; 
(ii) for all beams b E B entering an arbitrary chain consisting of the filters 

f l ,  f2 . . . . .  the transmission probabilities for each pair y)-]) are con- 
stant; Pb (/), fi) = constl(b), Pb(J), Y)) = const2(b); 

(/di) from all devices D satisfying the conditions (i) and (ii), for each device 
d we can find a set 0a consisting of all devices l i which have the same 
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transmission probabilities to all other devices fromD as a device d has, 
namely 

0 a = {tj E D;pb(lj, di) = Pb(d, di) for all b @ B and all d i E D) 
A filter is a minimally transparent element in the set 0a. This means 
that l b f  <~ lbtj for all tj E 0a and all b E B. I f  the minimally trans- 
parent element in 0a cannot be found, then we call all the devices Oct 
relative filters and to further analysis of the beams we choose one of 
them. 

The long property (iii) enables us to differentiate between classical filters 
and some similar classical transmitters. Our definition of the filters is different 
from that given, for example, by Mielnik (1969), and many relative filters 
from his work are treated like normal filters, as they should be. 

Definition 2. Provisory maximal filters are the minimally transparent 
elements in maximal sets of the compatible filters: 

Definition 3. A provisory pure beam is one for which the provisory maxi. 
rnal filter is transparent. We use the term 'provisory' since we are not sure 
whether the set of filters which we have in E is a maximal one. In the trans- 
mission stage some provisory pure beams can behave in a way suggesting that 
they consist of the two sub.beams not separated in the preparation stage. 

Usually it is assumed that two filters d and I are characterised by the trans- 
mission probability independent on b. In this paper we assume that the beams 
can be characterised by many properties and the same filters can be sensitive 
on different properties in a different way. For example, the filter d can be 
transparent to all beams having a property 'Pt '  but reduce the intensity of the 
beams having a property 'P2'. I fba  denotes a beam with the property 'Pl '  
only, and b2 denotes a beam with the property 'P2' only, then it can happen 
that phi(d, l) va phi(d, l). 

Besides the transmission probabilities Pb (f}, J)), which we shall denote in 
all practical cases p ()~, l)), we also need the filtration probabilities 

p(b,J~) = Ss(r)r(b, 3~) dr (2.2) 

where a filtration ratio r(b, fi) = Iyi/It) with l f i  and It) denote the intensities of 
the beams bfi and b respectively. 

Concluding, if we have the filters in E then we can find provisory pure 
beams and investigate only their properties. If we do not have the filters, we 
must have some other devices for the determination of the initial states. Such 
devices are the detectors Dp mentioned in the introduction. From all counters 
of quanta which we have in E besides the counter g from Statement 2 we 
eliminate all those which overlook some quanta independent of their proper- 
ties. They can be recognised by the proportional decrease of the registered 
intensities of all the beams. We also eliminate all non-linear counters. All those 
remaining are called Dp. Now with each beam b we can associate registration 
probabilities by all the detectors Dp. A registration probability p (b, d)  is 
defined by the detector d as 

p(b, d)  = Ss(r)r(b, d)  dr (2.3) 
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where registration ratios r(b, d) = Ia/I~ with I~ and Ia denoting the intensities 
of the beam b measured by the detectors g and d, respectively. (From this 
moment the detectors will be denoted solely by di and the filters by J~ to 
differentiate between the two kinds of probabilities p (b, fi) and p (b, di).) 

If the probability p(b, cl) = K, we can say that an average quantum of the 
beam b has the property 'd' (to be registered by the detector d)  with the 
probability K. As usual, we must check the character of the observed prob- 
abilities using different intensity reduction procedures. 

To visualise what kind of effects can appear in the case discussed above, we 
shall consider a simple example. 

Example. Let us consider four beams of classical objects produced by four 
sources, i.e., the beams of balls in three colours: pink, green and blue. All the 

p ( b , d )  

A t B t B 

] 
/ 

0 " " ~  C p(b,c) 

Figure 1. 

balls behave in an identical way in all macroscopic experiments. So from the 
point of view of a colour-blind observer they are identical. However, the 
observer has three additional detectors: g, d and c; g registers all balls, d regis- 
ters all pink and green balls, and c registers all green and blue balls. 

After repeated experiments, the observer notices that each beam b is 
characterised by the two registration probabilities p (b, d) and p (b, c), defined 
as before. The observer checks the stability of the values ofp(b, c) and p(b, d) 
by stopping some of the balls before they arrive at the detectors. Of course, he 
discovers that the beams behave like classical mixtures, but being unable to 
select the pure beams he can only represent the beams by some points in two- 
dimensional vector space. If all possible mixtures of the initial beams can be 
experimentally realised, then all these mixtures can be represented by a convex 
set on a plane. The specific shape of this set depends on the initial beams. One 
can say that each set is a convex envelope of the set of the points correspond- 
ing to the initial beams. Let us visualise this in a simple picture (see Fig. 1). 

The triangle ABC in Fig. 1 is a classical symplectic cone (Mielnik, 1969); 
the observer notices that the beams A, B, C are pure and the beam D is a 
mixture of them. 

Every ball of A has a feature 'd' and does not have a feature 'c'. 
Every ball o rB has both features "d' and 'c'. 
Every ball of C has a feature *c' and does not have a feature *d'. 
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The quadrangle C, D', A ', B' is another set of the initial beams; now only the 
beam Cis pure and the other beams are mixed, but since we cannot separate 
pure beams we can investigate the behaviour of all C, D', A r, B' beams in the 
transmission stage. 

The possibility of representing all the ~tates by all transition probabilities 
was pointed out (in a different context) by Haag & Kastler (1964). They also 
stressed that we know the transition probabilities only approximately, due to 
the experimental errors and limited precision of the instruments. However, the 
beams A', B', C, D' are represented by well-separated points in the two- 
dimensional vector space, so we are not afraid of ambiguities. 

If, in some other experimental situation, we obtained the same set A', B', 
C, D' and the beams showed quantum character, then we would assume that 
the beamsA r, B', C, D r are pure but we would represent them in the same way. 

Now we want to investigate the behaviour of our beams in the transmission 
stage. 

Definition 4. A classical transmitter Tis a device which changes the beam b 
in a unique way into a beam b T and which is not a filter. A quantum trans- 
mitter T is a device which changes the pure beam b into the beams bs with fixed 
transition probabilities PT(b, bs) and which is not a triter. 

Coming back to our example (classical case), we take as a transmitter T the 
device which changes the colours of the balls in a well-prescribed way. For 
example, it can change the beam b consisting of green and pink balls into the 
beam bT consisting of balls in one or two other colours. The classical trans- 
mitter of this type has a characteristic feature of repeatability: in the chains 
b, b T ,  b T T  , . . .  cycles must appear. The experimental values of  the registration 
ratios r(bT, c) and r(b T, d) form sharp one-peaked probability distributions 
s(r), enabling the easy calculation of the registration probabilities p(br, c) and 
p(bT, d). 

If  we have a quantum transmitter T' and a quantum beam b, there is no 
reason for the above-mentioned repeatability. Also, if the transmitter T p trans- 
forms the beam b into a set of well-separated beams bs with the transition 
probabilities pT(b, bs), then the observed experimental values of the registration 
ratios r(br', c) and r(bT', d) (at least one of them) should form many-peaked 
probability distributions s(r) with sharp peak values around r(bT', c) = p(bs, c) 
and r(br', cl) = p(bs, d), respectively. Therefore, analysing the distributions 
s(r), one can (in principle in this case) determine the beams bs and the tran- 
sition probabilities PT(b, bs) uniquely (at least if  all pT(b, bs) are different). 

Wanting to represent mathematically the transmitters T and T', we easily 
fred that T can be represented by a matrix whose range of the domain A rB'CD' 
must be a convex subset of  the square OABC. The beam bT can be represented 
by a vector bT = (p(bT, c), P(bT, d)). The registration probabilities can be 
obtained as scalar products with the vectors el = (1, 0) and e2 = (0, 1), respect- 
ively. In the quantum case, to each beam one can only associate a probability 
measure on the square OABC. Then T r transforms measures/% (which are 
nearly 1 on the vectors b and go quickly to zero outside) into measures 
m,T = S,~ PT(b, b~)m,~. 
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Remark 1. However, it can happen that the distributions s(r) cannot be 
interpreted in a unique way by means of the transition probabilities pT(b, bs). 
It can even turn out that they can be interpreted in infinitely many ways. This 
leads us to a serious revision of the definitions of pure beams and transmitters. 
As we know only the probability distributions s(r) characterise the ensemble 
bT' completely, the values of the registration probabilities p (bT', e) and 
p(br,, d) can characterise the ensemble b T, welt only if the distributions s(r) 
are sharp, symmetric and one-peaked distributions. In such a case, having a 
two-number classification of the ensemble/~T, we can ascribe the same numbers 
(with the experimental errors) to all member beams b r,  E bT', and even to the 
average quanta from each beam bT,. If the probability distributions s(r) have a 
reach structure, then they only characterise the ensemble bT' adequately and 
we can only discuss welLdefined states of the ensemble/7 T. This consideration 
leads us to the following definitions. 

Definition 5. A state of the ensemble b can be completely characterised 
only by the probability distributions s (r) of the filtration or the registration 
ratios for all beams b E b. 

Definition 6. A pure ensemble/7 of pure beams b is characterised by such 
probability distributions s(r) which remain approximately unchanged: 

(i) for the new ensembles bi obtained from the ensemble b by the apEli- 
cation of the ith intensity reduction procedure on each beam b E b; 

(ii) for all rich sub-ensembles of b chosen in a random way. 

Definition 7. A transmitter T is a device which transforms each ensemble 
into a well-defined ensemble/~T and which is not a filter. 

Now we come to the general conclusions of this long section. 

Conclusions 
We have considered the experimental set-ups with and without provisory 

maximal filters (p.m. filters). We also divide into two parts the discussion of 
mathematical schemes useful for the representation of the results. 

A. We have n-p.m, filters f l  . . . . .  fn, which we use not only for the prep- 
aration of p.p. beams but also to analyse the final beams obtained in the 
transmission stage. Now we can have two cases: 

(a) In the detection stage we always observe the p.p. beams, but starting 
from the same p.p. beam b and using the same transmitter T we observe 
different outgoing pure beams b i. However, they appear with more or 
less fixed transition probabilities pT(b, bi). In such a situation, we can 
represent the beams b i and bT by the vectors in the n-dimensional 
euclidean space El.  The initial beams b i c a n  be represented by the basic 
vectors e i and the beams bT by the vector bT in this space. The prob- 
abilities of finding the beams b i as the outgoing beam bT can be 
written in a scalar product form Pr(b, bi) = bT • el. Each transmitter T 
can be represented by a linear operator acting in this space. 
The beam b T never turns out to be one of the p.p. beams b i. We obtain 
only probability distributions s(r) of the f'titration ratios r(bT, fi), 
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which in general have rich peak structm'e. As we noted la the  example, 
it is possible to describe the ensemble bT of the beams bT by prob- 
ability measures PT on the n-dimensional vector space E2. The vectors 
b in E2, corresponding to beams b, have as their components the filtra- 
tion probabilities p(b, f)). The measures #b, corresponding to the initial 
p.p. beams bi, are nearly equal to I on the corresponding vectors bi and 
go quickly to 0 outside. The measures PbT are only characterised by all 
s(r). Only in some cases of the s(r) we can extract the transition prob- 
abilities PT(b, bs) in a more or less unique way. The beams bs are dif- 
ferent from the initial beams hi. The transition probabilities satisfy a 
condition Ns Pr(b, bs) = 1, contrary to the fact that for any chosen 
beam b r from the ensemble b r in general Ni r(br ,  fi) ¢ 1. In other 
cases we can fit our experimental data on s(r) with the different 
Pr(b, bs) in many different ways. To have uniqueness we have to accept 
that the ensemble bT is only characterised by all s(r), as was already 
stated in Remark 1 and in Definition 5. In such an approach there is no 
place for the notion of transition probabilities. 

B. The case when we have only n-detectors d 1 . . . . .  d n is mathematically 
equivalent to the case A(b). We have only to replace the filtration ratios and 
probabilities by the registration ratios and probabilities, respectively. 

In alI cases we should check the purity of the ensemble b r  according to 
Definition 6. Sometimes we can interpret the values ofpT(b,  bs) found, due to 
the mixed character of the initial ensemble b with respect to the property 
analysed by the transmitter T. Such a possibility explains the term 'provisory' 
occurring in the definitions of the maximal filter and the pure beam. A con- 
trary situation is also possible. Mixed ensembles with respect to some proper- 
ties can behave like pure ones with respect to the properties analysed by the 
transmitter T. 

The careful differentiation between filtration or registration ratios and the 
transition probabilities leads us to the conclusion that, in experiments of the 
type considered, if we succeed with the extraction of the transition prob- 
abilities from the experimental data, then in all cases A and B we can represent 
the beams by unit vectors in the n-dimensional Hilbert space for A(b) and B 
and the transition probabilities by the appropriate scalar products between 
them. It stems from the fact that for each ensemble b r  we have a finite num- 
ber of beams bs and the transition probabilities p (bT, bs), which can be 
embedded in the Hflbert space. However, the following new features appear: 

(i) The set of physically meaningful vectors is restricted to those corre- 
sponding to the b i (initial beams), to all beams biTi, biTiT] • • • (where 
T i are all available transmitters), and also to all beams bs extracted in 
the analysis of the data. If  we have two vectors bTi and br~ we do not 
know whether b% + br~ corresponds to a physically realisable beam 
bT 3. 

(ii) The physical interpretations have only some scalar products of the 
vectors of the type [(brlbs)I 2 = pT(b, bs), where bs are found in the 
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analysis of all s(r) describing b'T and b s are vectors corresponding to 
them. All the b s found for all transmission processes form an ortho- 
normal basis of the Hflbert space considered. 

If we accept the philosophy of Definitions 5-7, then the Hilbert space 
description loses its sense, since the transition probabilities pT(b, bs) do not 
appear. 

However, in all the cases discussed above, having many experimental results 
we can try to find a quasi-theory enabling us to interpret the data and to 
predict new results. 

So we find that the usual quantum mechanical description can turn out to 
be not too poor, as was suggested by Mielnik (1968, 1969), but too rich Or 
not very appropriate. 

The experimental scheme discussed so far is structurally similar to that used 
for the investigation of the scattering phenomena of elementary particles. 
Instead of simple filters and detectors we use many complicated instruments 
which, based on our previous knowledge, enable us to prepare and classify the 
initial and final beams. The different kinds of chambers and emulsion layers 
enable us to observe one-particle beams; but, in fact, we observe only statistical 
regularities characterising ensembles of such beams. The scattering process can 
be understood as specific transmission processes in two ways. One interpret- 
ation is that one-particle beams, for example proton beams bp, are transmitted 
by the transmitters = protons Tp leading to a many-particle beam (bp)Tp = 

f l bp_p. Another interpretation is that initial beams b~.p consisting of the two 
free protons are transmitted by the transmitters = strong p-p interaction into 
the final beams b~p_p. We still have an additional interpretational freedom; by 
a transformed ensemble b;_p we can understand a set of all final free particle 
beams bfp_p or a set of  strongly interacting proton-proton beams bSp_p, which 
are visualised by the interaction points in the emulsion layers or the photo- 
pictures from the different chambers. In this second case, the final flee particle 
beams bfp_p can be interpreted as arising in some kind of measurement process 
performed on the beams bp_p. 

One could argue that the formalism discussed in this paper is not very 
applicable, since in elementary-particle physics we deal with the continuous 
variables characterising the beams. However, in all preliminary experimental 
data we characterise our initial and final beams by intervals of, in fact, con- 
tinuous variables. All these analogies, and the fact that a set of  the different 
scattering processes which can be observed between elementary particles is 
very limited, show the need for careful investigation of whether the quantum 
mechanical unitary S-matrix language is not too rich for the description of the 
observed phenomena. We shall investigate this problem in detail in the sub- 
sequent paper. 

Now we give for completeness a definition of instruments, leaving the 
analysis of the practically realised instruments to the subsequent paper. 

Definition 8. An instrument I is a device allowing the description of each 
beam b in terms of earlier known categories (parameters). The ascription of 
these parameters involves the assumption of the applicability of some earlier 
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known theories. The instrument, by its interaction with the beam b, changes 
it into a beam bx. The repeated application of the same instruments usually 
leads to slightly different values of parameters ascribed to our beams. The 
measurement made by the instrument for all beams b characterises the 
ensemble/~ An ideal instrument is such that we can assume that bi = b. 

Generally, one could consider the instrument which can change the 
ensemble ~ into the different ensemble bx :~ b. Analysing the results of many 
measurements, one could find the characteristic features of  the instruments 
used. In spi~ of the fact that b's is different from/~, the values of parameters 
ascribed to b in the measurements can be used in some way for the labelling 
of the initial ensembles b or/~I. However, in practice we try to use the ideal 
instruments. A good example of  such instruments are the filters f i  as applied 
on the beams bfi , different kinds of chambers and so on. 

At the end of this section we should like to point out that, in spite of the 
fact that we have been talking about ensembles of quanta beams, our results 
can be generalised for experiments with ensembles of identical physical systems. 
Instead of filters and detectors, we should have other more complicated instru- 
ments to determine the states of the initial and final ensembles. 

We should also like to remark that the particle character of our beams, 
implying measurement of the beam intensities by counting the quanta, is not 
necessary. When discussing states of ensembles/~, we can measure the intensities 
and the appropriate ratios for some non-particle beams. The particle character 
of the beams was essential in the discussion of the pure beams and of the non- 
classical character of the probabilities. 

Now we pass to the polemic with some views presented in papers on 
axiomatic quantum mechanics. 

3. Polemic with Axiomatic  Quantum Mechanics 

The great success of quantum mechanics in describing many atomic and 
sub-atomic phenomena, and the fact that classical physics is a limiting case of 
quantum physics, encouraged people to think that a general framework to 
describe all physical phenomena had been discovered. 

To prove this statement one should find such a set of the natural assump- 
tions on S, B, F, D, T and I characterising a physical process of a measurement 
in general, which would imply uniquely the usual quantum description. 

The more general attitude was accepted in the papers of  the Birkhoff & 
yon Neumann (1936), Mackey (1963), Jauch (1964, 1968), Jauch & Piton 
(1963), Piton (1964), Finkelstein (1963), Finkelstein, Jauch, Schimonovich & 
Speiser (1962, 1963), Gunson (1967), and others, where the so-called quantum 
logic of the propositions concerning a physical system was studied. In the 
papers of Ludwig (1967, 1968) and D~hn (1968) the state-effect structures 
were investigated; in the papers of Pool (1968a, b) state-event structures. 

All these studies aimed to find such a set of natural axioms which would 
imply uniquely the use of  the complex Hilbert space language or the algebraic 
Haag-Kastler (1964) language for the description of the states and transition 
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probabilities. The required set of assumptions was found in many axiomatic 
approaches; however, the naturality of some of the accepted assumptions is 
questionable. They were all chosen by analogy to the experiments performed 
on the optical bench with the use of colour filters, Nicol prisms, and other 
devices. The states of the differently polarised light can be represented by all 
rays in the complex two-dimensional Hilbert space • (2 ,  C) and each state 
can be realised in the laboratory. To each linearly polarised beam there corre- 
sponds in a one-to-one way an appropriate filter-the Nicol prism or polaris- 
ation f'flter-which is transparent to it. So one has, in principle, an uncountable 
amount of filters in the laboratory, since in that case nearly each rotation per- 
formed on the Nicol prism enables its interpretation as a different filter. 

This special case strongly supports the commonly accepted philosophy in 
quantum mechanics, according to which each pure beam state is prepared by 
an appropriate maximal filter. Also the filtration probabilities of the pure 
beams (2.2) in that case are equal to the transmission probabilities (2.1) 
between the corresponding filters and can be expressed by the scalar products 
of the unit vectors in f ( 2 ,  C) representing those filters. So in fact, instead of 
talking about the states, one can talk about the filters and the transmission 
probabilities between them. 

This observation gave Mielnik the force to attack the usual quantum logic 
approach. His main starting point (Mielnik, 1968) was assumption that the set 
of filters with the geometry implied by the transmission probabilities is the 
main characteristic of all quantum phenomena (however, MMnik, instead of 
saying 'transmission', says 'transition'. Therefore, to investigate the problem of 
the universality of the orthodox Hilbert space representation, one must study 
whether the above-mentioned geometry allows the representation of the filters 
by the unit vectors and the transmission probabilities as scalar products. In his 
two clear and provocative papers (1968, 1969), he realises his programme and 
comes to the following conclusions (1969): 

' . . .  It now becomes clear that the orthodox classical and orthodox 
quantum systems do not represent a unique alternative for quantum 
theories, but they are only particularly degenerate members of a vast family 
of 'quantum worlds' which are mathematically possible. . . '  

' . . .  We thus conclude that the concepts reviewed in this article represent 
the missing element necessary to convert non-linear wave mechanics into 
'mechanics of non-linear quanta . . . ' . '  

Though there is no mathematical fault in the papers (Mielnik, ] 968, 1969), 
in our opinion the above statements are not well justified. A simple mis- 
understanding is due to the interpretation of the transmission probabilities as 
the transition probabilities. These latter are a basic notion measured in all our 
experiments and depending on the dynamics of the phenomena. The transition 
probabilities can be directly connected with the cross-section, branching-ratios, 
life-times of the excited levels, and so on. The value of quantum mechanics 
consists in its ability to predict those probabilities in the agreement with the 
experimental data. On the other hand, the transmission probabilities are the 
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static properties of the filters and the beams and can only be used (if the filters 
exist) to characterise the initial and final beams. A careful analysis of the 
general experimental set-ups made in the previous section allowed a clean dif- 
ferentiation between all kinds of probabilities [(2.1), (2.2), (2.3)] and 
Definition 6 divorced the concept of a pure state with a concept of a maximal 
filter. So the Mielnik statement has to be changed into the following statement: 

There can be many sets of filters whose transmission probabilities do not 
allow the representation of them by the unit vectors in the Hilbert space 
with the transmission probabilities being equal to the appropriate scalar 
products. 

Besides this main criticism, we have other critical remarks concerning the 
paper (Mielnik, 1969). In this paper the maximal transmission systems are 
considered. Those systems have so rich a class of transmitters that each physi- 
cal state can be transformed in any other by means of the appropriate trans- 
mitter. They also have, in general, an uncountably rich set of maximal filters. 
To each pure beam there correspond two filters; one is completely transparent 
to the beam, the second is completely non-transparent. In our opinion, dealing 
with such rich classes of filters is rather unrealistic. Therefore, we cannot 
accept the second-cited conclusion concerning the quantisation of non-linear 
theories. The procedure proposed in the paper (Mielnik, 1969) can be devoid 
of any physical meaning. 

To illustrate our arguments we shall discuss a nice example of the drop of 
non-Hilbertian quantum liquid from Mielnik's (1968) paper: 

' . . .  Someone looked at a small spherical glass bubble: inside there was a 
drop of liquid. The drop occupied exactly half of the bubble in the shape 
of a hemi-sphere. He was able to introduce inside a thin, flat partition 
dividing the interior of the bubble into two equal volumes. He tried to do 
this so that the drop would become split. However, the drop exhibited a 
quantum behaviour: instead of being divided into two parts, the drop 
jumped and occupied the space on only one side of the partition. He 
repeated the attempt, obtaining a similar result. He began to observe this 
phenomenon and discovered that each time the partition is introduced the 
drop chooses a certain side with a definite probability. This probability 
depends upon the angle between the partition and the initial surface of 
the drop. If the drop occupied a hemisphere s and the partition forces it to 
choose between the two hemispheres r and r', the probabilities of transition 
into r and r r are proportional to volumes of s n r and s n r ~. He was struck 
by the analogy between positions of the drop and quantum states and 
between the partition and the macroscopic measuring apparatus. He wanted 
to formulate the quantum theory of this phenomenon, but he realised that 
he could not use Hilbert spaces because the space of states of the drop was 
not Hilbert ian. . . ' .  

We disagree with that conclusion and we analyse the behaviour of the 
observer. To make some predictions he considers an ensemble b of the above- 
mentioned bubbles b. Before starting to divide the liquid drop he fixes the 
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positions of all the bubbles to make the surfaces of all the drops horizontal. 
He chooses a well-separated set of N partitions t i labelled by the angles as 
between partitions and the surface of the drops. After many partitions have 
been made, he observes ~V possible positions of the drops after partitions. 
Repeating the experiments with fLxed partition t of the ensemble b he finds 
out the probabilistic behaviour of the drops with some fixed transition prob- 
abilities to the final states. Before accepting a usual quantum interpretation of 
the probabilities he investigates the purity of the ensemble b as described in 
Definition 6. If the ensemble b turns out to be pure, he accepts the following 
interpretation. The partition t is some kind of interaction exerted on the 
drops so the partition t is some ~nd  of quantum transmitter transforming the 
ensemble b into pure ensembles bl  and b2 with fixed transition probabilities, 
pt(b, b 1) and pt(b, b2). Of course, those probabilities for all the partitions ti 
we can represent as a scalar products in 2N dimensional real Hitbert space of 
the vectors bti corresponding to the bti with appropriate vectors bi's. Naturally, 
the scalar products btl • bt~ have no physical meaning. Therefore, the Hilbert 
space description of this phenomenon is in some sense too rich and not too 
poor, as was claimed in Mielnik (1968). 

Returning to the discussion of axiomatic quantum mechanics, we state that 
in our opinion the problem of Birkhoff and yon Neumann, although skillfully 
solved in the different axiomatisation schemes, was stated in too general a 
way. In our opinion, it is not very economic to talk about all possible prop- 
ositions concerning the physical systems in general. In practice we have to 
perform the experiments and the analysis of the results gives us a set of physi- 
cally meaningful propositions about the system. This set depends on the par- 
ticular experimental set-up and its richness depends on the richness of the 
observed phenomena. The careful analysis of the particular experimental set- 
ups can lead us to the discovery of new, more economical and fruitful 
descriptions, though the old language of Hilbert spaces could be used. Being 
too general, we cannot get insight into such problems and we cannot hope to 
arrive at the conclusive new statements to be verified in the experiments. 

Finally, we should like to question some axioms of Gunson (1967) and Pool 
(i968a). Gunson considers a set of propositions P and a set of states S. States 
are the probability measures on the propositions, taking the real values from 
0 to 1. The axiom A.4 is: 'For every a, b E P we have a <_- b if and only if 
f(a) <. f(b) for all f E S. For the propositions, the relation a < b is equivalent 
to the usual implication relation a implies b. Gunson also uses the following 
definition of the orthogonality a .k b -~ a < b', where b' is the logical negation 
of the proposition b. 

Counter example. Let us consider the following situation. We have only two 
pure ensembles )Zand g and two detectors d and l. The only things we can 
measure are the registration probabilities (2.3) by those detectors. With each 
detector we can associate two propositions. For example: the proposition 
'd ' - ' the  physical system from the ensemble is registered by the detector d', 
and the proposition 'd" - ' the  physical system from the ensemble is not 
registered by the detector d'. As we see for f E J~we have p(f ,  d) = f( 'd ' )  in 
Gunson's notation. 
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Now let us assume that we observe the following values of p( f ,  d) and 
p( f ,  l): f ( ' d ' )  = 1/4,g('d') = 1/3,f('l ') = 1/8,g('r)  = t/7, f ( 'd")  = 3/4, 
g( 'd") = 2/3, f ( ' l")  = 7/8, g('l") = 6/7. 

As we see, the propositions 'd'  and '/ '  satisfy the axiom A.4 so 'd '  < ' l '  
which is equivalent to 'd'  implies '/', but such implication is physically com- 
pletely unjustified. Now, using the definition of the orthogonality, we find 
that d < d' ;  therefore, d ± d. 

Pool in his papers accepts the following definitions and axioms: 
Definition/. 1. An event-state structure is a triple (E, S, P): 

(i) E is a set called the logic of the even-state structure and an element of 
E is called an event; 

(ii) S is a set and an element of S is called a state; 
(iii) P is a function P: E x S ~ [0, 1] called the probability function and if 

p E E and a E S, then P(p, ~) is called the probability of the occurrence 
of the event p in the state ~; 

(iv) i fp  E E, then the subsets SI(P) and So(p) orS  are defined by 

SI(p)  = {a E S: P(p, ~) = 1} 

So(p) = {~ ~ s: e(p,  ~) = 0}. 

Axiom/.3.  If p, q E E and S l (p  ) C Sl(q),  then So(q) C So(p). 
Axiom/.4.  I f p  E E, then there exists an event p '  E E such that 

SI(p ')  = So(p) and So(p') = St(p) .  
In our opinion, these axioms are not general enough. For example, if a are 

the states of ensembles consisting of beams, and p are the events of  the type 
(transmission through the filter p), then the P(p, a) can be the transmission 
probabilities. In this case, the properties and the richness of the sets $1 (p) and 
So(p) depend on the beams and the filters in the particular experimental set-up 
and it is easy to give an example for which the Axioms 1.3 and 1.4 are not 
satisfied. 

The above two examples support our thesis that it is extremely difficult, if 
not impossible, to axiomatise all possible experimental set-ups in the natural 
way. 

Now we pass to the last section, where we formulate a programme of future 
investigations which could enable the answer of the title question of our paper. 

4. A Programme o f  Investigations 

We could not answer the title question of this paper, since we have been 
analysing some hypothetical general experimental set-ups. To answer the 
question whether the Hilbert space language is too rich to describe some 
physical phenomena, we should carefully analyse all real physical set-ups and 
observed phenomena, starting from solid-state physics and ending with high- 
energy elementary-particle physics. Such analysis should be done by physicists 
who really work in the specific branch of physics and who know all the subtle- 
ties of the experimental set-ups and of the theoretical analysis used to explain 
the data (to obtain the curves). 
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It is clear that it is quite difficult to find out that the language used is too 
rich; moreover, with the help of computers a beautiful agreement with the 
data can be obtained in most cases. However, one feature of the too rich 
language is the possibility of  obtaining the same predictions using quite dif- 
ferent models, which is equivalent to the lack of the unique theoretical 
explanation. The observation of such a situation can be a first hint for future 
investigations. In our opinion, one more or less sure method is to find such 
rigorously derived experimental predictions of a general nature, which can be 
verified in experiment, and to test them with full objectivity. In elementary- 
particle physics it can be the unitarity of the S matrix. The other method is to 
try to invent more economic language. In the discussion of the general experi- 
mental set-up, such possibilities were indicated. Especially interesting was that 
of Remark 1 where the notion of the transition probability disappears. 

The other interesting problem is an operational status of quantum mech- 
anics in its applications to many new phenomena. The operational status of 
quantum mechanics was discussed on the basis of experiments with polarised 
light and Stern-Gerlach experiments. Quantum mechanics as applied to high- 
energy elementary-particle scattering was not discussed in that context. 

Another important problem is to investigate to what extent the good results 
which we obtain depend on all our particular assumptions and on the basic 
assumptions of the theory we used. Many models in elementary-particle 
physics are believed to be checked by the agreement of  their predictions with 
experiment and are supposed to have a deeper physical meaning (not only to 
be a convenient parameterisation of the data). However, sometimes a careful 
analysis of the results shows that they are not deduced from the assumptions 
and they can only be rigorously derived from another set of assumptions which 
can have nothing in common with the physical ideas involved in the initial 
assumptions. To give an example, a careful analysis performed in the papers 
(Kielanowski & Kupczyfiski, 1971 ; Kupczyfiski, 197i) showed that the 
additivity assumption in the quark model applied with success for high-energy 
elementary-particle scattering can have nothing to do with the physical picture 
of a static quark model where the quarks are treated like hypothetical 
constituents of the elementary particles. 

The programme which we have presented can be summarised as follows. Let 
us be more critical of the models we propose, of the conclusions we obtain, 
and let us check the operational status of the language we use m deal with data. 

The investigation in this direction will be continued in the subsequent paper. 
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